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Figure 1: Frames of a real-time animation that was created with a fully-animatable character model that we reconstructed from multi-view
video. An animation artist created a new texture for the model and simply applied a motion capture file from the internet to obtain this new
animation. The moving geometry and the cloth behavior are as lifelike as on the real subject.

Abstract

We present a new performance capture approach that incorpo-
rates a physically-based cloth model to reconstruct a rigged fully-
animatable virtual double of a real person in loose apparel from
multi-view video recordings. Our algorithm only requires a min-
imum of manual interaction. Without the use of optical markers
in the scene, our algorithm first reconstructs skeleton motion and
detailed time-varying surface geometry of a real person from a ref-
erence video sequence. These captured reference performance data
are then analyzed to automatically identify non-rigidly deforming
pieces of apparel on the animated geometry. For each piece of ap-
parel, parameters of a physically-based real-time cloth simulation
model are estimated, and surface geometry of occluded body re-
gions is approximated. The reconstructed character model com-
prises a skeleton-based representation for the actual body parts and
a physically-based simulation model for the apparel. In contrast to
previous performance capture methods, we can now also create new
real-time animations of actors captured in general apparel.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—;

Keywords: performance capture, markerless motion capture,
multi-view reconstruction, game characters

1 Introduction

Currently, there is a notable gap in visual quality and detail be-
tween virtual humans in movie productions, which are entirely ren-
dered off-line, and virtual characters in real-time applications, like
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computer games. Ever more powerful computers and specialized
hardware and software for real-time physics and cloth simulation
(e.g., Nvidia PhysXTM or HavokTM) will soon enable us to narrow
this gap. Eventually the complexity and visual fidelity of real-time
characters will start to rival that of today’s virtual film actors.

The flip-side is that when it comes to character design, develop-
ers of games and consumer graphics applications will soon be fac-
ing quality requirements that come much closer to those of today’s
movie productions. More detailed surface geometry will have to be
designed or scanned, more detailed textures will have to be painted
or photographed, more detailed motion will have to be key-framed
or captured, and cloth simulation models will have to be prop-
erly tuned to enable real-time rendering. Fortunately, various ac-
quisition technologies exist to support the animator in parts of the
character design process: motion capture systems to obtain skele-
ton motion, 3D scanners to measure static geometry, or specialized
measurement devices to analyze cloth material parameters [Kawa-
bata 1980]. However, using such non-integrated tools can be very
cumbersome, expensive, and time-consuming. In consequence,
even movie productions still rely heavily on manual design and
often measure the effort to create virtual actors in man-months of
work. This is a level of complexity that most game developers will
not be able to afford.

The design process for complex future game characters would be-
come faster and more affordable if an integrated capture technol-
ogy existed that could measure all aspects of an animation, such
as geometry, motion, material values, and appearance, from real
subjects. A first step towards this goal has been taken by perfor-
mance capture approaches which enable the reconstruction of de-
tailed motion and time-varying geometry of humans from multi-
view video recordings [Bradley et al. 2008; Vlasic et al. 2008;
de Aguiar et al. 2008b]. Unfortunately, performances captured with
these approaches can merely be played back, but their motions and
deformations cannot be arbitrarily modified by an animator.

Therefore, we propose a new marker-less method to capture skeletal
motion, 3D geometry, and the dynamics of the character’s apparel
from multi-view video. This representation is fully-animatable, i.e.,
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it allows us to freely modify the skeletal motion of the character and
create new animations where cloth and surface deformations look
as lifelike as on the real subject. Our goal is not the reconstruction
of models physically accurate models; rather, we aim for easy and
integrated reconstruction of plausible rich performance models that
serve as a basis for modification by the animator and that can be
realistically animated in real-time. Our main contributions are:

• A new approach to capture plausible fully-animatable virtual
humans from sparse video recordings of real world actors
in loose apparel that comprise: detailed surface geometry, a
fully-rigged skeleton, and a cloth model for loose pieces of
apparel.

• An algorithm to automatically identify wavy cloth regions and
to approximate geometry that is occluded by the attire.

• An algorithm to estimate plausible cloth simulation parame-
ters from the entire apparel of a subject in motion.

• A method to easily create new real-time animations with the
reconstructed human, without needing a new recording.

To achieve our goal, we have to carefully select and design solutions
to a large variety of challenging algorithmic sub-problems. Only
the proposed combination of these solutions enables reconstruction
of animatable models. The integration of our data into real-time ap-
plications is simple and our cloth simulation framework is compat-
ible with a widely-used real-time physics library. We show results
on a variety of example sequences and also confirm the high fidelity
of our reconstructions in a user study.

2 Related Work

In our research, we build upon previous work in many different
disciplines in graphics and vision. In the following, we limit our
overview to a representative subset.

Our algorithm is an evolution of previous performance capture ap-
proaches that reconstruct non-modifiable models of dynamic shape
and motion of real-world actors from video. Today’s performance
capture algorithms are based on marker-less motion capture algo-
rithms from computer vision [Poppe 2007]. Most of these original
methods only work for people with skin-tight clothing, merely pro-
vide skeletal motion parameters, and thus fail to recover detailed
dynamic shape models, let alone cloth simulation parameters.

In the fields of image-based rendering and 3D video, several meth-
ods for dynamic geometry reconstruction have been proposed [Ma-
tusik et al. 2000; Zitnick et al. 2004; Waschbüsch et al. 2005], with
the final goal of rendering novel viewpoints of the scene. Unfortu-
nately, the level of detail in the captured geometry is typically not
sufficient for reconstruction of an animatable model. Furthermore,
most methods fall short in recovering actual motion parameters, and
if they do, such as in the case of model-based 3D video [Carranza
et al. 2003], people in arbitrary loose clothing cannot be handled.
One step towards reconstructing an animatable representation of a
human was taken by Allen et al. [2006], who learn a deformation
model of the naked shoulder and torso from body scans in differ-
ent postures. Sand et al. [2003] use a similar idea and learn pose-
dependent body deformations by using marker-based motion cap-
ture and silhouette matching. Similarly, the SCAPE model learns
variations in human body shape and surface deformation from laser
scans of people [Anguelov et al. 2005]. [Park and Hodgins 2008]
learn a data-driven model of skin and muscle deformation from
dense marker-based motion capture data. All these methods are
suitable for more-or-less naked people, but none of them can han-
dle people in loose everyday apparel.

Performance capture algorithms promise to reconstruct detailed
scene geometry and surface appearance from unmodified multi-
view video streams. Starck and Hilton [2007] use a combination
of shape-from-silhouette, multi-view stereo, and spatio-temporal
cross-parameterization to capture detailed dynamic scene geome-
try. Recently, Vlasic et al. showed a multi-view photometric stereo
approach to capture dynamic geometry of people recorded under
a dome with rapidly switching light conditions [2009]. To fa-
cilitate reconstruction of spatio-temporally coherent geometry of
people in arbitrary clothing, de Aguiar et al. propose to use de-
formable meshes created from static full-body laser scans for track-
ing [2008b]. The methods by Vlasic et al. [2008] and Gall et
al. [2009] utilize a skeleton to ease the estimation of the non-rigid
mesh deformations.

The biggest disadvantage of all performance capture approaches to
date is that the captured result cannot be modified in such a way
that physically plausible surface deformations persist (e.g., plausi-
ble folds). Mesh sequence editing techniques exist [Kircher and
Garland 2006; Xu et al. 2007] that allow for a certain degree of
modification. However, they neither allow the same level of control
as our fully-rigged character, nor create plausible cloth animations
in new poses at a level of quality comparable to our approach. Our
method is inspired by motion segmentation methods that identify
approximately rigidly moving sections in mesh animations [James
and Twigg 2005; de Aguiar et al. 2008a] to identify waving cloth
regions and fit a physics-based model to the input performance.

Our final animatable model uses the position-based dynamics ap-
proach by Müller et al. [2007] for forward simulation of cloth since
it represents a good compromise between speed, simulation ac-
curacy, and complexity of the parameter space. We estimate the
parameters of the cloth model from captured performance data.
A variety of alternative cloth simulation methods exist in the lit-
erature that go beyond plausible simulation and allow for physi-
cally accurate simulations (see [Choi and Ko 2005] for an overview
of some methods). However, most of them do not satisfy our
real-time animation core goals. Many previous approaches for
cloth estimation from real world samples reconstruct deforming
cloth geometry only, but not a physically-based forward simula-
tion model. Some methods use multi-view feature matching and
stereo for vision-based deforming geometry capture of square cloth
samples [Pritchard and Heidrich 2003]. Other algorithms rely on
special marker patterns printed on the fabric, as well as on an a pri-
ori geometry model of a piece of apparel, to measure time-varying
cloth geometry from multi-view video [Scholz et al. 2005; White
et al. 2007]. The latter approach also learns a simple data-driven
deformation model which can approximate the wrinkling of fabric
in new poses. Recently, Bradley et al. [2008] proposed a new ap-
proach to capture deforming cloth geometry from multi-view video
without explicit markers in the scene. An extension of their method
allows image-based reinsertion of fine scale geometric folds that
could originally not be captured in the geometry [Popa et al. 2009].

So far, only few algorithms estimate parameters of a physics-based
cloth model from images. Bhat et al. [2003] learn such parame-
ters from waving square fabric samples that were recorded with a
real-time structured light system. Conceptually related is the ap-
proach by Shi et al. [2008] who estimate parameters for simulat-
ing secondary skin deformation. In contrast, our method neither
requires an a priori shape model for individual pieces of apparel,
nor any form of visual pattern in the scene, or any off-line physi-
cal material measurements from fabric samples. Our method fully-
automatically identifies all cloth regions on the entire moving hu-
man and recovers plausible simulation parameters.
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(a) (b) (c) (d) (e) (f)

Figure 2: Overview of our processing pipeline: (a) multi-view video sequence of a reference performance; (b) performance capture result:
skeleton motion + deforming surface; (c) cloth segmentation (regions of loose apparel in red); (d) Statistical body model fitted to reference
geometry; (e) estimated collision proxies. (f) After optimal cloth simulation parameters are found, arbitrary new animations can be created.

3 Overview

It is our goal to reconstruct an animatable human character in gen-
eral clothing from unmodified multi-view video streams, with lit-
tle manual intervention. The first step in our algorithm is record-
ing a so-called reference sequence of the person whose model is
to be reconstructed (Fig. 2(a)). In this sequence, the person walks
around for a few seconds in the same attire that should be part of
the final model. From this reference sequence, we reconstruct a so-
called reference performance which comprises a deforming mesh
sequence that represents the detailed dynamic surface geometry of
the moving actor, as well as a sequence of joint angle parameters of
an underlying skeleton (Fig. 2(b), Sect. 4).

The dynamic surface geometry of the reference performance is au-
tomatically decomposed into approximately rigid body parts and
non-rigidly deforming pieces of attire (Fig. 2(c)). In the same stage
of the algorithm, we fit a statistical body model to the reference
performance (Fig. 2(d)) and reconstruct approximate collision ge-
ometry (Fig. 2(e)). These collision proxies are needed for believ-
able and fast cloth simulation (Sect. 5). After segmentation, we fit a
physics-based cloth simulation model to each region of the deform-
ing fabric (Sect. 6).

The output is an animatable performance model comprising a skele-
ton with surface skinning for non-cloth regions, collision proxies,
and a physics-based simulation model for apparel. Arbitrary new
animations of the character with realistic dynamic surface appear-
ance can be created by simply changing skeletal motion parameters
or material parameters of fabrics (Fig. 2(f) and Sect. 7).

4 Capturing the Reference Performance

Prior to recording the reference performance, we acquire a model
of the subject that comprises two components: a surface mesh and
an underlying bone skeleton. To measure the surface mesh M,
we take a static full-body laser scan Mhigh of the actor wearing
the attire for the reference sequence, which we then decimate to
roughly ntri = 5000 triangles. The decimation is necessary to
keep both performance capture and, later, performance simulation
times in reasonable bounds. The original laser scan may contain
holes, some of them due to bad measurements and some of them
due to occlusion, such as at the underside of the skirt. We first auto-
matically fill in all holes by means of Poisson surface reconstruction
to create a closed surface. Some originally occluded regions may
have been filled in a “semantically” wrong way, such as the sheet

of triangles connecting the lower rim of skirt and legs. We have
developed a semi-automatic tool that suggests regions of “seman-
tically” incorrect triangles. For this we detect regions where the
surface reconstruction closed large holes in the original scan. The
user can then refine this suggestion manually. Implausible triangles
are thereby marked as invalid. They are weighted down in the refer-
ence performance capture and excluded from the animatable model
estimation.

After the surface is defined, a skeleton with 36 degrees of freedom
is inserted into the mesh by manually marking the joint positions.
Thereafter, the method of [Baran and Popović 2007] is employed
to assign each vertex a weight that is used to deform the surface
according to the skeleton pose by means of quaternion-blend skin-
ning [Kavan et al. 2007].

The reference performance of an actor is filmed by 8 synchronized
and calibrated cameras (40 fps, 1004 × 1004 pixels) placed in a
roughly circular arrangement around the scene. The image sil-
houettes are extracted by chroma-keying. The multi-view video
streams are further processed by a fully-automatic marker-less per-
formance capture method [Gall et al. 2009]. This method jointly
captures the pose of the skeleton as well as the non-rigid deforma-
tion of the surface mesh (such as folds in clothing) over time, even
for people wearing loose apparel that occludes large parts of the
body (Fig. 2(b)).

5 Cloth Segmentation and Approximation of
Collision Geometry

Skin deformation, as well as the deformation of rather tight cloth-
ing, are locally nearly rigid deformations and can be approximated
by surface skinning. This does, however, not hold true for surface
regions which represent loose non-rigidly deforming pieces of ap-
parel. We therefore analyze the deforming surface geometry of the
reference performance and automatically segment it in order to sep-
arate loose apparel from largely rigid surface regions whose mo-
tions are well described by skinning (Fig. 3).

If the deformation of a body part is approximately rigid, mutual
distances of vertices on that part hardly change over time. Based
on this insight we derive the following simplified-yet-efficient rule
to decide if a vertex vi lies on a cloth segment: In the first mesh
poseM(1) of the reference sequence, a ray is shot from vertex vi

in the negative local normal direction and intersected with the mesh
surface on the opposite side. Vertex vi is paired with the inter-

3



To appear in the ACM SIGGRAPH Asia conference proceedings

(a) (b) (c) (d)

Figure 3: Cloth segmentation and collision proxies for different clothing styles (red=cloth, green=approximately rigid): (a) skirt s1, dancing
sequence; (b) skirt s2, walking seq.; (c) dress s4, dancing seq.; (d) capoeira seq. s5 - cloth regions and transition areas at boundaries are
reliably identified. Note that in (a) a mostly rigid woolen cord was correctly excluded from the cloth region (dent in the red area).

section point pi, which is described on the intersected face at sub-
triangulation accuracy using barycentric coordinates. We now com-
pute the standard deviation σ(vi) = σ(d(vi,pi)) of the Euclidean
distance d(vi,pi) over the entire reference sequence. If this stan-
dard deviation exceeds a threshold trigid we conclude that vi lies
on a non-rigidly deforming surface area likely to be cloth. In other
words, we find non-rigidly deforming surface regions by search-
ing for sections with non-persistent cross-sectional areas. This is a
weaker criterion than testing preservation of mutual distances be-
tween all points on a segment, but is much more efficient to com-
pute and performs well in practice.

Since our final animatable performance model combines
physically-based and skeleton-based animation, we need to make
sure that the transition between the two modalities is seamless. We
transform the σ(vi) values into “clothness weights” δ(vi) ∈ [0, 1]:

δ(vi) = cl
(
σ(vi)− trigid
tcloth − trigid

)
. (1)

Here, the function cl clamps the weights to [0, 1]. tcloth repre-
sents a threshold on σ(vi) above which vertex motion is fully de-
termined by the physics simulation. The motion of a vertex with
δ(vi) = 0 is fully-controlled by skeleton motion and skinning, a
vertex with δ(vi) = 1 is fully cloth model controlled. Vertices with
δ(vi) ∈]0, 1[ lie in the transition zone between cloth and skeleton
simulation (e.g., the rim of the skirt and parts of the pants in Fig. 3).
In Sect. 6.2 we explain how to blend the two animation types in
those areas. To create a smooth clothness distribution and fill in
potential holes in the estimation, we also perform a diffusion of the
δ’s on the surface.

For both the estimation of cloth simulation parameters, as well as
for creating new animations, it is essential that collisions of the fab-
ric with the body are plausibly simulated. Unfortunately, the true
shape of the body geometry under wide attire is not directly visible
and is thus neither part of the captured mesh sequence nor the skele-
ton model itself. We therefore resort to a statistical mesh model
Ms (Fig. 2(d)) that jointly encodes the space of naked human body
shapes and body poses [Hasler et al. 2009a] in a lower-dimensional
parameter space. This model has been learned from 550 scans of
114 individuals (59 male, 55 female subjects - aged 17 to 61) in dif-
ferent body poses. In this model, a body mesh of particular shape
and pose is parameterized with a vector of principal component co-
efficients s such thatMs = E · s+Ma, with E being the matrix
of eigenvectors (principal components), andMa being the average
human body.

Unlike [Balan and Black 2008], who fit a statistical model directly

to image data, we fit the statistical model to our surface scan such
that its shape comes as close as possible to the scan in all areas
where the clothness weight is 0. Thereby, we exploit the fact that
the model globally encodes the space of body shapes, and fitting
it to regions where the underling body is well exposed allows for
inference of geometry in occluded regions. Fitting is performed
in a semi-automatic way similar to [Hasler et al. 2009b]. First, a
few corresponding landmark points on the scan and the statistical
model (hands, feet, and head) are marked. Thereafter, a combina-
tion of rigid and non-rigid alignment to closest points on the scan is
applied, followed by a projection onto the statistical model’s PCA
space. Unlike [Hasler et al. 2009b] we exploit the cloth segmenta-
tion and only use points on our scan that have low clothness weight
as fitting constraint. Since the statistical model also encodes pose-
dependent deformations of the naked body, it is sufficient to fit it
to only one pose of our model. As efficient collision checks are of
utmost importance for real-time animation, we approximate the ge-
ometry of the statistical surface model in regions occluded by cloth.
These conical collision proxies approximate the occluded geometry
well and allow for efficient collision checks. Although we do not
use the full statistical model for collisions, we use it in new anima-
tions for rendering the shape of occluded body parts, such as the
legs under the skirt (see Sect. 7).

6 Estimating a Cloth Model

For cloth simulation we use the position-based dynamics approach
presented in [Müller et al. 2007]. Many previous cloth simulation
methods do not use vertex positions explicitly as part of the simula-
tion state, but compute them by integrating velocities. In contrast,
in position-based dynamics vertex positions are explicit members of
the simulation state which allows for direct position manipulation
during simulation. Internally, simulation results are computed by
a combination of Euler integration and a Gauss-Seidel-like solver
for constraint projection. The position-based dynamics framework
bears a couple of advantages in our problem setting: it allows for
plausible real-time simulation, it is very stable, it can handle non-
linear constraints, and it allows us to formulate all our simulation
constraints using the same mathematical framework. Here, we only
briefly review the main concepts of our approach and refer the in-
terested reader to the original paper by Müller et al. for details on
the physics-based simulation.

Each piece of cloth is geometrically represented by the respective
surface mesh region found by our segmentation approach (Sect. 5).
The simulated geometry comprises vertices with positions vi and
velocities ui. The masses mi for each vertex are approximated by
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the respective areas on the surface. In addition, the solver expects a
set of nc constraintsCj acting on the positions of the mesh vertices,
as well as a set of external forces acting on the fabric f . In analogy
to the original paper by Müller et al., we represent each constraint
Cj by means of a function defined over a subset of vertex positions.
The strength of each constraint is further controlled by a stiffness
parameter kj .

We employ several types of simulation constraints: collision con-
straints, stretching and bending constraints, as well as additional
so-called blend constraints that enable us to seamlessly interpolate
between cloth and skeleton simulation, as explained in Sect. 6.1.
Stretching constraints take the form

Cstretch(va,vb) = ‖va − vb‖ − la,b , (2)

where la,b is the rest-length of the edge between va and vb, which
is the length of the respective edge in the decimated body scanM.
The bending constraint evaluates to

Cbend(va,vb,vc,vd) = acos(nl · nr)− φ , (3)

where va, vb, vc, and vd are the positions of vertices of two ad-
jacent triangles that share a common edge, and nl and nr are the
respective triangle normals. φ is the rest-angle between the two
triangle normals.

We use spatial hashing to quickly find collisions and self-
intersections, yielding additional collision constraints with fixed
stiffness kcoll = 1.0. Finally, we include so-called blend con-
straints, which are defined for each vertex with a δ(va) ∈]0, 1[ and
read

Cblend(va) = pa , (4)

where pa is the position the vertex should reach. The stiffness of
this constraint, kblend(va), is vertex-specific and explained in more
detail in Sect. 6.1.

External forces comprise gravity fg and drag fd. Unlike the original
paper by Müller et al., we use a more sophisticated model for air-
resistance similar to Bhat et al. [2003]. The air drag force depends
quadratically on the velocity in direction of the surface normal, and
linearly in tangential direction:

fd(vi) = −0.5A(vi)(dn‖ui,n‖2n+ dtui,t) . (5)

Here, A(vi) is the area of the surface patch around the vertex vi

(in our case equal to mi). ui,n and ui,t are the components of
ui in direction of normal n and tangential to it, respectively. The
constants dn and dt are the drag coefficients.

Friction and restitution are handled by directly manipulating veloc-
ities of colliding vertices. To this end, vertex velocities are damped
in the direction perpendicular to the collision normal by a factor
1− kfriction, and reflected in the direction of the collision normal.

For each cloth region on the model, the six parameters

ρ = (dn, dt, kbend, kstretch, kfriction)

have therefore to be determined, i.e., the two drag coefficients,
stretching and bending stiffness, and friction.

In theory, the number of simulation steps niter per frame of video
could be considered a free parameter of our optimization problem
as well. However, we aim for a character that can be simulated in
real-time, and in real-time applications the number of iterations is
usually fixed in order to balance resources. Therefore, we employ
the same number of iterations (niter = 24) during both parameter
optimization and the creation of novel animations.

(a) (b)

Figure 4: Two components of the error function on the cloth sec-
tion (light blue) shown in 2D. (a) silhouette distance error: red
lines between reprojected and measured silhouette points; (b) SIFT
distance: green lines between predicted SIFT feature locations and
measured SIFT feature locations.

6.1 Combining Cloth and Skeleton Animation

Before explaining how to estimate cloth parameters, we describe
how new poses of our final fully-animatable performance model are
created. Positions of vertices with δ(vi) = 0 are solely determined
by the current joint parameters of the skeleton and dual quaternion
skinning. Similarly, the positions of all pure cloth vertices with
δ(vi) = 1 are determined by the physical simulation described in
Sect. 6. For blend vertices, δ(vi) ∈]0, 1[, the new pose is jointly
determined by cloth and skeleton simulation. To this end, we apply
the blend constraints from Eq.(4), which push the points towards the
positions according to the skeleton-based animation with a stiffness
of kblend(vi) = 1− δ(vi).

6.2 Cloth Parameter Estimation

The cloth parameters ρ are found by running a numerical optimiza-
tion that strives to minimize cloth deformation in the reference se-
quence. We measure two properties of the simulated animation:
1) the alignment of the cloth region’s silhouette edges with silhou-
ette boundaries in all input images over time, Esil(ρ, t), and 2) the
alignment of the reprojected cloth with robust SIFT features [Lowe
1999] in the interior of the fabric in all camera views, Esift(ρ, t).

For each time step of the video t and each input camera view c,
a certain set of vertices on the cloth segment under consideration
should project onto the silhouette boundary of the respective input
frame. This set can be easily identified and we call it the set of
silhouette rim vertices Vc,t (Fig. 4(a)). The silhouette error then
evaluates to

Esil(ρ, t) =
1

nsil

∑
c

∑
v∈Vc,t

d2im(qSc,t(v),q
′
Sc,t

(v)) , (6)

where dim(qSc,t(v),q
′
Sc,t

(v)) is the image space distance be-
tween the reprojection q′(v) of silhouette rim vertex v into sil-
houette image Sc,t and the closest boundary point of the measured
silhouette in the same image, qSc,t(v). nsil is the number of all
rim vertices from all Vc,t in this frame.

For each time step of the video and each camera view, we also com-
pute a set of SIFT features, Fc,t. In addition, we establish corre-
spondences between features in two subsequent time steps for each
camera view (Fig. 4(b)). The feature-based energy term is defined
as

Esift(ρ, t) =
1

nsift

∑
c

∑
e∈Fc,t

d2im(oIc,t(e),o
′
Ic,t(e)) , (7)
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(a) (b)

Figure 5: (a) Plot of the energy function Efit over dn and kbend. A clear minimal energy area can be observed near the center. (b)
Robustness of CMA-ES optimization for a single material: Several optimizations initialized with different particle distributions converge
to the correct parameter region after only a few number of particle generations (X-axis: generation; Y-axis: distribution mean shown for
normalized kfriction component).

where oIc,t(e) is the 2D image position of feature e in image Ic,t.
o′Ic,t(e) is the predicted image position of feature e at time t and
nsift is the number of all features from all Fc,t in this frame. For
each camera c, these predicted image positions are obtained from
feature positions at the previous time step as follows: Each feature
e at time step t − 1 is projected back onto the final cloth surface
at t − 1 using the camera matrix of camera c. For each feature e,
this yields a 3D position on the surface of the mesh pc,t−1(e), ex-
pressed in barycentric coordinates relative to the enclosing mesh tri-
angle. The position at the current time step t, p′c,t(e), is predicted
from pc,t−1(e) by the cloth simulation. The predicted image posi-
tions o′Ic,t(e) are then obtained by reprojecting p′c,t(e) back into
each respective camera view.

Both error terms are evaluated over the entire reference sequence
and their contributions are combined, yielding the overall fitting
error

Efit(ρ) =
1

N

N∑
t=1

(αEsil(ρ, t) + βEsift(ρ, t)) . (8)

Here, the values α = 1 and β = 10 are empirically determined
weights that are kept constant for all our estimations. The combina-
tion of silhouette and SIFT features is essential for our goodness-of-
fit measure. While silhouette data is important to assess the overall
appearance of the cloth boundaries, the SIFT features provide a lot
of information on cloth behavior from the inner regions of the cloth
in all images.

When evaluating Efit, both Esil and Esift are evaluated for each
frame t after the new model pose is determined according to the
method in Sect. 6.1. We intentionally formulate our energy func-
tion in terms of image features of the original reference sequence,
and not in terms of a 3D comparison to the tracked meshes from the
reference performance. In this way we stay as close as possible to
the measured data and prevent unintended fitting to potential inac-
curacies in the tracked 3D reference performance (see Sect. 7 for an
3D RMS error comparison to a synthetic ground truth sequence). In
addition, our formulations of Esil and Esift are memory efficient
as they only require storage of 2D silhouette rim points and 2D fea-
ture locations for each input frame.

The error functionEfit is non-convex and exhibits many local min-
ima, as shown in Fig. 5 for two of the six simulation parameters (dn
and kbend). Despite the local extrema, a clear region of minimal er-
ror is apparent. This multi-modalness comes as no surprise since

the cloth simulation behavior is highly non-linear and causes po-
tentially large changes in geometric cloth appearance for only small
changes in ρ. Quasi-Newton or conjugate gradient based optimiz-
ers do not work very well on such energy functions. In addition,
analytic gradients are not easily available which would make costly
numerical approximations necessary.

Evolution Strategy with Covariance Matrix Adaptation To
tackle the challenging energy functional, we apply the evolution
strategy with covariance matrix adaption (CMA-ES) [Hansen et al.
2009] to find a minimum of the energy function Eq.(8). In the fol-
lowing we briefly describe its core concepts and refer the reader to
the original paper for a more in-depth discussion.

CMA-ES is an iterative sampling-based algorithm. In each itera-
tion (called a generation) the energies of a set of random samples
from the parameter space ρ are evaluated. The distribution of these
samples is determined by a multivariate Gaussian. The samples are
then used to re-estimate the covariance matrix of the Gaussian dis-
tributions, after which a new generation of samples is generated.
By iterating this process, the optimizer explores the search space
and finds a local minimum in the energy function.

Intuitively, the CMA-ES algorithm strives to estimate a covariance
matrix that provides a local second-order approximation of the un-
derlying energy function (similar to the inverse Hessian in a Quasi-
Newton approach) without requiring analytic gradients. Since the
covariance matrix update analyzes the best samples from several
previous generations and not only the most recent one, the opti-
mization can be performed with a small population. This not only
makes optimization faster, it also creates distributions that provide:
a) high variance in the best sampling direction, b) an increase of
the likelihood of good samples to be redrawn in new generations.
In combination this enables sampling in the correct direction, i.e.,
a placement of samples along the actual local gradient direction
rather than a uniform placement of samples around the mean of the
distribution. At the same time, the evolution strategy prevents pre-
mature convergence to local minima.

In our case, we stop the optimization after 512 function evaluations,
or when the variance along all dimensions is smaller than 0.025.
We return the mean of the final distribution as the best simulation
parameters. The best particle population size per generation is au-
tomatically determined and typically equals 9 in our experiments.
We initialize all optimizations with the same mean and covariance.
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In practice, we rescale all elements of the parameter vector ρ (from
the original parameter range shown in Tab. 1) such that the feasi-
ble solutions lie within [0, 1]. In order to limit the search space
without disturbing the sampling procedure at the boundary, we aug-
ment the energy function in Eq.(8) with a quadratic penalty term as
in [Hansen et al. 2009], yielding our final energy function:

ECMA(ρ) =

{
Efit(ρ) ρ ∈ [0, 1]6

Efit(ρr) + ω · ‖ρ− ρr‖2 otherwise
,

where ρr is the nearest boundary value to ρ. Parameter ω is fixed
to 16 for all experiments.

When deciding for the best optimizer, we experimented with a sim-
ulated annealing (SA) approach as well as CMA-ES. Although we
were able to achieve plausible material parameters with both ap-
proaches, convergence of SA depends strongly on the chosen an-
nealing strategy parameters, whereas CMA-ES automatically ad-
justs its strategy. In our case, simulated annealing usually requires
2 − 4 times more sample evaluations than the evolutionary ap-
proach. Further, CMA-ES proves to be very robust and stably con-
verges to a plausible solution after relatively few sample genera-
tions, even if the initial particle distribution varies a lot (Fig. 5(b)).

7 Results and Discussion

We captured 14 performances using the method described in
Sect. 4, each comprising between 400 and 1100 frames. In those
sequences, a male and a female actor wear five different types of
apparel. The female subject wears: a skirt with medium thickness
(s1), a long skirt made from a lighter material (s2), a medium length
skirt of a comparably stiff material (s3), and a dress (s4). For the
male subject we reconstructed a capoeira sequence in loose pants
(clothing style s5). For each attire, we captured several different
sequences with motion styles ranging from walking and dancing to
kicking and turning in the capoeira scene.

All renderings of new animations in the paper and the accompa-
nying video were created by real-time transfer of the pose of the
decimated meshM used for simulation to the high resolution body
scanMhigh using a method similar to [de Aguiar et al. 2008b]. In
the following, we discuss several aspects of our approach.

Segmentation and Cloth Parameter Estimation For each style
of apparel, we choose one reference sequence from which to recon-
struct an animatable performance, Table 1. For skirt s1, we also
reconstructed animatable models from two different reference mo-
tions (walking and dancing) to verify stability. Our segmentation
approach was able to reliably identify the loose cloth areas in all ref-
erence scenes using a fixed set of segmentation thresholds (Fig. 3).
The segmentation of s1 in two different reference sequences is al-
most identical, which demonstrates the stability of our method.
The segmentation of the pants in the capoeira sequence shows that
our algorithm also faithfully handles tighter clothing which is less
wavy than the skirts. Our algorithm correctly identifies the legs of
the trousers and the sleeves of the t-shirt as slightly wider apparel
(Fig. 3(d)).

Table 1 lists the set of cloth simulation parameters which we esti-
mated for the different clothing styles. As best shown in the video,
the visual draping characteristics of all reconstructed fabrics closely
match the draping behaviors of their real world counterparts. For
instance, the stiffest skirt s3 (Fig. 6(top)) produces far less folds
than the light dress s4 (Fig. 6(bottom)) which moves rather vividly.

Creating New Animations Arbitrary new motions of recon-
structed models can be created in only a few minutes by applying

new skeletal motion data. One source of new motion data used
in this paper are additional sequences measured with the method
from Sect. 4, i.e., we captured additional motions not used as refer-
ence performances. For some animations we used one of 15 motion
capture files that were downloaded from an online motion capture
database and retargeted. Note that arbitrary motion capture files or
key-frame animations by an animator would be equally feasible. In
all new animations, both the overall appearance of the body and the
deformation behavior of the cloth are very lifelike since even subtle
deformation details are realistically reproduced (Fig. 6 and accom-
panying video). It is also easily possible for an artist to modify
material parameters, or to apply a new texture to the newly created
animations, as shown in Fig. 1.

The mesh pre-processing step described in Sect. 4 may lead to holes
in the geometry (e.g., underneath the skirt), that may become visible
during new animations. Therefore, for visualization we render the
respective parts of the statistical body model to approximate the
shape of occluded body geometry (such as the legs) and thereby
close the holes.

As mentioned before, real-time rendering performance is main-
tained by rendering new poses based on the decimated surface
model M and real-time pose transfer to the high-resolution scan
Mhigh. UsingMhigh directly for both reconstruction and render-
ing leads to slightly more detailed results but precludes real-time
rendering.

Validation and User Study Our goal is to conveniently cap-
ture models that enable realistic and physically plausible simula-
tions in real-time, but not models with material parameters of strict
physical accuracy. Therefore, comparison of our estimated cloth
parameters to material properties measured with material science
test methods [Kawabata 1980] is not a reasonable way to validate
our reconstructions. Instead, we apply our reconstruction method
to a synthetic video data set that was created by rendering one
of our performance models fitted with a synthetic texture back
into the input camera views. Our estimated material parameters
ρest = (5.4, 5.6, 0.75, 1.0, 0.47) are similar to the ground truth set
used for creating the sequence ρart = (4.0, 4.9, 0.7, 1.0, 0.5). As
shown in the video, the visual appearance of the reconstruction is
almost indistinguishable from ground truth. This is also numeri-
cally confirmed by the low average 3D RMS vertex distance error
of 0.6 cm between the cloth parts of the data sets over time.

We also performed a user study with 52 participants to validate that
our system is able to plausibly reproduce the behavior of a spe-
cific set of clothes. Each of the participants was shown a web page
containing three videos. Each video contained one input camera
view of the dancing sequence of skirt s3 and a simulated 3D model
generated with our algorithm from the same viewpoint. One video
(video C) showed the simulation parameters found by our estima-
tion algorithm (Table 1), while the other two videos used different
material parameters taken from the other reconstructed skirts (see
additional material). In a first experiment, participants were asked
to evaluate how similar the skirt’s fabric in our animated model be-
haves in comparison to the input video. Five options were given
to assess the similarity to the input video in percent: totally dif-
ferent - 0%, different - 25%, looks similar - 50%, almost the same
- 75%, the same - 100%. The results were: 56.73% (A), 54.32%
(B), and 67.30% (C). The result confirms that the majority of par-
ticipants correctly identified video C (generated with our estimated
parameters) as most similar to the real skirt (ANOVA p < 0.01).
A similar result was achieved by our second experiment, where we
asked the subjects to rank the simulations according to the closeness
between simulated cloth behavior and reference input (1=most sim-
ilar, 3=most dissimilar). Here, 27 subjects correctly ranked video
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sequence set name dn dt (×103) kbend kstretch kfriction #frames
[0, 32] [0, 32] [0, 1] ]0, 1] [0, 1]

s1a: dancing ρ1a 7.054 0.119 0.195 1.0 0.129 1000
s1b: walking ρ1b 5.198 0.553 0.134 1.0 0.401 800
s2: walking ρ2 0.876 1.603 0.575 1.0 0.790 1100
s3: dancing ρ3 0.774 0.452 0.888 1.0 0.070 600
s4: dancing ρ4 1.184 0.621 0.100 1.0 0.228 800
s5: capoeira ρ5 1.727 3.587 0.382 1.0 0.558 400

Table 1: Estimated cloth simulation parameters for the different skirts, the dress, and the pants, each made of a different fabric. ρ1a and ρ1b
were estimated for the same skirt from different reference sequences.

C as the closest match (Wilcoxon test, p < 0.05). In both experi-
ments, the tests (for the differences in mean) show that both results
are clearly statistically significant. Therefore, we conclude that we
can capture and simulate cloth behavior in a plausible way.

Timings and Practical Considerations It takes around 2.5
hours to reconstruct a reference performance of 1000 frames on
an Intel Core 2 Duo 3.0 GHz with the approach from Sect. 4.
All sequences we captured, both reference sequences and skele-
ton motions only used for new animations, were tracked fully-
automatically. Segmentation of cloth takes approximately 5 sec-
onds. Using a single-threaded implementation for computations,
estimation of cloth simulation parameters takes approximately 3−5
hours for a reference sequence consisting of roughly 1000 frames.
There is room for notable speedups through parallel parameter sam-
ple evaluation (Sect. 6.2) which we leave for future work. Overall,
the entire reconstruction requires very little manual interaction, e.g.,
fitting of the statistical body model or the kinematic skeleton only.

The actual computation of new poses and the transfer to the higher
resolution mesh of about 25k triangles run in real-time at 60 fps
on the same machine. The cloth simulation currently runs with the
same step size as the capture rate of our camera system (i.e., 40 fps).
However, it would be a straightforward process to decouple simula-
tion and animation frame rates by expressing fractional steps using
linear blending between two updates, as is usually done in real-time
simulation scenarios.

Applications Character animators for real-time graphics appli-
cations like games and networked virtual environments will benefit
from our integrated acquisition approach. For instance, our algo-
rithm could be used to capture animatable avatar models, such as
personalized game characters. In most cases, our method will not
immediately deliver the final result to be used in the application, but
provides animators with detailed models that can be conveniently
adjusted to their needs in little time. Our system is thus a powerful
add-on to the animator’s toolbox.

Design Choices Our approach requires careful selection and
adaptation of existing solution strategies, as well as the design of
new algorithmic solutions to many challenging sub-problems.

We tested several alternative strategies for cloth segmentation, such
as: 1) Analyzing the variation of surface to skeleton bone distance
over time, or 2) thresholding the distance of the surface scan (with
apparel) to the fitted statistical body model which is used for col-
lision proxy creation. Our proposed method from Sect. 5 is much
simpler to implement and produces better results than any of the
above. Alternative 1) frequently leads to implausible segmenta-
tions were the skeleton model does not reflect the anatomical re-
ality faithfully, such as in the shoulder area. Alternative 2) fails
since motion information is not used and actually loose apparel

may happen to lie flat on the body in the scanned pose. As an
additional benefit our segmentation approach would also work for
reference performances captured with purely surface-based capture
approaches, such as [de Aguiar et al. 2008b].

In contrast to related approaches from the literature, e.g., [Bhat et al.
2003], our cloth parameter fitting uses rich 3D feature information
captured from around a subject wearing an actual piece of apparel,
not only data from a sheet of cloth. Our input data therefore reflect
the real cloth behavior in interaction with the body more realis-
tically. Moreover, our energy function spatio-temporally evaluates
the quality of the simulation dynamics (by evaluating predicted fea-
ture locations). Both of these aspects are important for the quality
of our results.

Discussion Our approach is subject to some limitations. We
cannot handle apparel that shows arbitrary topology changes while
moving, such as the opening up of a coat. Additional manual post-
processing is needed in this case. Further on, the quality of cloth
segmentation and the plausibility of estimated cloth parameters is
dependent on the type of reference sequence captured. If there is in-
sufficient motion in the cloth, we will not be able to identify wavy
pieces of apparel automatically. However, this is not a principal
limitation since in a general recording scenario it is trivial to in-
struct the person to move in such a way that the motion of all pieces
of apparel are sufficiently prominent.

As seen in the error plot (Fig. 5(a)), the energy function has several
local minima near the global minimum. Each of them has an er-
ror value very close to the minimal error. Any simulation run with
parameters from this restricted region will be perceptually almost
indistinguishable from the optimum according to our energy func-
tion. While we cannot guarantee to find the global optimum our
optimization will typically find one of the near local minima that
reproduces the cloth behavior in a perceptually plausible way. The
restricted regions of plausible parameters are clearly distinct for dif-
ferent materials. This enables our algorithm to faithfully disam-
biguate between materials with different physical properties. This
has been confirmed in our user study.

We estimated the parameters for the same skirt s1 from two dif-
ferent reference sequences (a walking sequence and a dancing se-
quence, see parameter sets ρ1a and ρ1b in Table 1). While the pa-
rameter sets are not identical, cross-validation against parameter
sets of s1 to s5 confirms that ρ1a and ρ1b represent the same ma-
terial. If the reference sequence does not demonstrate the behavior
of the material in a reasonable way (for example when recording a
scene without significant motion), the optimization will produce a
different parameter set than for a highly dynamic scene of the same
apparel. This can be fixed by properly instructing the performer.

Currently, tracking errors in the skeleton estimation phase of our
pipeline can cause jittering artifacts in the final results. In the sup-
plemental video this can sometimes be seen around the hands and
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(a) (b) (c) (d) (e)

Figure 6: Results for skirts s3, and the dress model s4. Column (a) input frame from reference sequence; (b) the reconstructed animatable
model corresponding to the reference frame; (c)-(e) subsequent frames of a newly created animation for which only motion parameters of the
underlying skeleton were given (see also accompanying video).

hips. These errors mostly occur because of silhouette ambiguities
(including actual errors in the segmentation and differences in pose
between 3D scan and video like open hand versus closed hand), or
missing image features in some parts of the videos. Adding addi-
tional constraints like joint limits or smoothing trajectories would
alleviate some of these issues. The tracking errors may have an
impact on the estimated cloth parameters and it would be interest-
ing to evaluate this influence in more detail as part of future work.
Nevertheless, even in the presence of these artifacts we are able to
estimate good simulation parameters that produce visually convinc-
ing results.

Our method estimates only a single set of material parameters for all
cloth regions of a character. In future work we plan to estimate more
fine-grained spatially-varying properties, so that structural features
in cloth, such as seams, can be represented more faithfully. Our as-
sumption that non-rigidly moving regions are cloth is reasonable for
most types of scenes. Other simulation models would be required
to properly model hair or strongly deforming tissue.

The cloth simulation parameters are not independent of the step
size and the number of iterations. We always have to estimate pa-
rameters for exactly the same simulation settings that we also use
for creating new animations. We have experimentally explored that
dependency by animating skirt s1 with lower numbers of simula-
tion iterations than used for reconstruction. Even if we reduce the
number of iterations by 25%, the 3D RMS vertex distance error to
the animation with the correct number of iterations is only 1.8 cm
(for the cloth region). This corresponds to only minor visual dif-
ferences. Therefore, it is fair to assume that within this range of
iterations the same parameters can be used.

It was our goal to develop a convenient method for capturing human
character models of much higher quality and detail than the mod-
els usually found in today’s real-time graphics applications. Even
though our reconstructed materials are not physically accurate, our
results show that highly plausible new animations can be rendered
in real-time. Admittedly, the reconstructions shown in this paper
would probably fall short of the quality requirements of movie pro-
ductions. However, we are confident that the basic estimation prin-
ciple scales to such scenarios and movie animators may still find
our reconstructions helpful as a starting point. Some quality gains
can already be obtained by giving up real-time performance and us-
ing the high-resolution meshes throughout the pipeline, as well as
by using the complete statistical body model as collision geometry.

8 Conclusion

We have presented a new integrated method for reconstruction of a
fully-animatable model of a person in general apparel from multi-
view video that incorporates a physically-based cloth model. Our
human model is a rigged character with skeleton, skinning weights
and cloth parameters, and is designed for real-time rendering. All
elements of our animation model have been estimated from data
with only minimal manual interaction. In contrast to previous per-
formance capture methods, we can now also create new real-time
animations of performers captured in general apparel. Each aspect
of the model can be conveniently modified. New animations can be
rendered in real-time and look as realistic and physically plausible
as if they were captured from the real subject. The high quality of
our reconstructions and new animations has been confirmed on a
variety of test data sets, as well as through a user study.
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WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., SADLO, F.,
AND GROSS, M. 2005. Scalable 3D video of dynamic scenes.
In Proc. Pacific Graphics, 629–638.

WHITE, R., CRANE, K., AND FORSYTH, D. 2007. Capturing and
animating occluded cloth. In ACM TOG (Proc. SIGGRAPH’07).

XU, W., ZHOU, K., YU, Y., TAN, Q., PENG, Q., AND GUO, B.
2007. Gradient domain editing of deforming mesh sequences. In
ACM TOG (Proc. SIGGRAPH ’07).

ZITNICK, C. L., KANG, S. B., UYTTENDAELE, M., WINDER, S.,
AND SZELISKI, R. 2004. High-quality video view interpolation
using a layered representation. ACM TOG (Proc. SIGGRAPH
’04).

10


